
Implementing Andy Farnell’s ‘bouncing ball’ in Csound

Implementing Andy Farnell’s ‘bouncing ball’ in Csound

Marijana Janevska, James Anderson, Joachim Heintz

Incontri – Institute for contemporary music at the HMTM Hannover

janevskam@stud.hmtm-hannover.de

Abstract: This paper discusses the Csound implementation of the bouncing ball

model from Andy Farnell's Designing Sound [Farnell 2010]. We will consider

Farnell’s approach to sound design with Pure Data, then present two possible

procedures for extending this model to and improving it in Csound. Finally, we

will present creative examples of varying and employing the model in a musical

context.

Keywords: Csound, CsoundQt, Pure Data, Hannover, Incontri, FMSBW, Andy

Farnell, Designing Sound

1 Introduction

During the last two semesters’ programming seminar at the Hochschule für Musik, The-

ater und Medien Hannover’s Incontri Institute for New Music, we have focused on trans-

ferring sound models in Andy Farnell's Designing Sound from Pure Data to Csound, one

of which was the bouncing ball. In this paper we will follow Andy Farnell’s description

of a bouncing ball and its acoustical characteristics. How can a bouncing ball be depicted?

What model can be developed to replicate its sound? How is this model implemented in

PD and Csound? How can it be applied creatively to a musical context?

2 Analysis following Andy Farnell's description of the model of a

bouncing ball

Fig. 1. [Farnell 2010, p. 384]

mailto:incontri@hmtm-hannover.de

2 Marijana Janevska, James Anderson, Joachim Heintz

A bouncing object’s physical behaviour is characterized as positional energy lost over

time. Farnell’s analysis is focused on the decaying energy during a sequence of events. A

pattern is used to represent the sequence in which the duration between events as well as

the spectral complexity and total amplitude in each event diminish. Of course, the size,

density, material content and initial height of the ball can all affect the impact sound,

which can vary enormously. The rate of energy loss can be approximated as linear. Since

the energy of each impact is a result of the height from which the ball falls, the first bounce

is the loudest and longest in duration. It also deforms the ball the most, and results in a

much richer sound compared to the subsequent bounces. The first bounce would have the

most complex harmonic spectrum, whereas the ensuing bounces’ spectra would linearly

become simpler.

3 Program flow as general model

The basis for each implementation is the development of a general model that can be

implemented in any relevant programming language. Thus, following Farnell’s descrip-

tion of the model, we produced the following program diagrams and then used it to trans-

fer the model to Csound:

Fig. 2. Program diagrams

The two diagrams illustrate two important aspects of the model.

Firstly, the ALL BOUNCES unit produces the temporal sequence. Each bounce acts as a

trigger to the ONE BOUNCE unit, with the time between each decreasing as the sequence

progresses. The ALL BOUNCES unit also creates the decaying lines for some of the var-

iables used in the ONE BOUNCE units, namely Modulation Amplitude, Carrier Fre-

quency and Carrier Amplitude.

Secondly, the ONE BOUNCE unit produces the sound for each individual bounce. This

is achieved via frequency modulation, which uses the variables generated by the ALL

BOUNCES unit as well as locally generated envelopes.

Implementing Andy Farnell’s ‘bouncing ball’ in Csound

4 Farnell’s process for implementing the model in PD

There are many possible ways to implement the above model, all of which will vary de-

pending on the program used. Farnell’s PD implementation consists of two parts. In the

first, for generating one bounce, frequency modulation synthesis is used to reduce the

spectral complexity of each bounce. This is repeatedly triggered by a metronome in the

second part of the model, and is responsible for the sound of each bounce.

A linear envelope from 1 to 0 over a 3 second period

is first constructed for the overall duration of the se-

quence of events. A bang message starts a metronome

(built with the ‘metro’ object) that triggers each indi-

vidual event. The time between the first and second

bounces (the triggering time) is 0.3 seconds, and

gradually falls to 0 over the entire sequence of

bounces, resulting in ever more frequent triggers. The

initial event’s decay time is 0.2 seconds, which also

drops to 0 over the course of the sequence, and is

stored in the ‘float’ object. A new value is conse-

quently sent to the ‘vline’ object with each trigger,

which produces a linear ramp that progresses from 0

to 1 in 1 millisecond, and moves from 1 to 0 over the

decay time sent from the ‘float’ object. This then ad-

justs the level of frequency modulation and the main

output amplitude for each subsequent event, starting

with an amplitude of 0.2 for the first bounce and fall-

ing to 0 at the end of the event-sequence.

The frequency modulation synthesis, used for produc-

ing the sound of each bounce, begins with a complex

sound that is rich in harmonics, and gradually reduces

it to a sine wave. More precisely, the frequency of the

carrier starts at 210Hz and falls to 80Hz; the ampli-

tude of the modulator begins at 70 for the first bounce,

then progresses to 0. The modulator frequency is 120

Hz, which is a constant value.
 Fig. 3. [Farnell 2010, p. 385]

5 Implementing the model in Csound

We have considered two of many possible ways for implementing the model in Csound:

Straightforwardly and in some ways similar to the PD version, we built two instruments:

First, the “One_bounce” instrument produces the sound of each bounce using frequency

modulation; the “All_bounces” instrument then uses the ‘metro’ opcode to trigger the

“One_bounce” instrument with a decreasing time period between subsequent triggers.

4 Marijana Janevska, James Anderson, Joachim Heintz

instr All_bounces

 kLine = linseg:k(1, p3, 0)

 kMetroFreq = divz(1,kLine*0.3,1000)

 kTrigger = metro(kMetroFreq)

 if kTrigger == 1 then

 schedulek("One_bounce",0,kLine*0.2,kLine)

 endif

endin

instr One_bounce

 iDecay = p4 //receives what is kLine in 'All_bounces'

 aMod = poscil:a(iDecay*70,120)

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2

 aCarFreq = 80+130*iDecay*aEnv^2

 aCar = poscil:a(iDecay*0.2,aCarFreq+aMod)

 outall(aCar*aEnv)

endin

schedule("All_bounces",0,3)

Though this implementation remains relatively faithful to the PD version, there are nev-

ertheless a number of noteworthy differences. By separating the ALL BOUNCES and

ONE BOUNCE units, Csound's instrument approach arguably better represents the model

than the PD version. Moreover, the variable names present the opportunity to express in

the code what takes place in the programme. Two details should be mentioned here. Since

the 'metro' opcode in Csound has a frequency input argument (rather than PD's 'metro'

object which requires a duration as an input), the metro frequency must be calculated as

the inverse of the kLine signal. To avoid the possible division by zero in writing 1/kLine,

we instead use the 'divz' opcode. In the PD version, Farnell avoids clicks when a new

bounce is triggered by using "1 1 0, 0 $1 1" as input for the 'vline~' object, rather than the

simpler "1, 0 $1 1". The envelope in Csound's "One_bounce" instrument could be em-

ployed without a fade-in, e.g.:

aEnv = linseg:a(1,p3,0) ^ 2

We nevertheless decided to include a short fade-in of two milliseconds in order to achieve

a less noisy attack. This is one example of "fine tuning" the sound, for which Csound

offers a wealth of possibilities.

Csound also presents the possibility of an instrument that triggers itself, so that the model

can be implemented with one self-triggering instrument that stops when a given limit is

reached, in this case 1/1000 of a second.

instr Bouncing_ball

 iThisDuration = p3

 iDecay = (3-p2)/3

 aMod = poscil:a(iDecay*70,120)

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2

 aCarrFreq = 80+130*iDecay*aEnv^2

 aCar = poscil:a(iDecay*0.2,aCarrFreq+aMod)

 outall(aCar*aEnv)

 if p3>1/1000 then

 schedule("Bouncing_ball",iThisDuration*1.5, iThisDuration*0.9)

 endif

endin

 schedule("Bouncing_ball",0,.2)

Implementing Andy Farnell’s ‘bouncing ball’ in Csound

6 Expanding the model in Csound1

There are many possible ways of expanding the model and employing it creatively in a

musical setting. We will present here just a short example and discuss it briefly below.

We will introduce p-fields to change the relevant parameters of the instrument. Since the

modulator frequency is the only constant value in the model, adding a moving envelope

will lead to a wide variety of frequency modulation values and a very rich palette of sonic

possibilities.

More examples can be found at:

https://github.com/incontri-hannover/ICSC2022/tree/main/Examples

instr All_bounces

 kLine = linseg:k(p4, p3, p5)

 kMetroFreq = 1/(p3/10*kLine)

 kTrigger = metro(kMetroFreq)

 if kTrigger == 1 then

 schedulek("One_bounce",0,p6,kLine,p7,p8)

 endif

endin

instr One_bounce

 iDecay = p4 //receives what is kLine in 'All_bounces'

 kMFRandom = random:k(1, 1000)

 kMFRandom2 = random:k(1/10, 10)

 kModFreq = randomi:k(p5, p5+kMFRandom, kMFRandom2)

 aMod = poscil:a(iDecay*70,kModFreq)

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2

 aCarrFreq = 1+p6*iDecay*aEnv^2

 aCar = poscil:a(iDecay*0.2,aCarrFreq+aMod)

 outall(aCar*aEnv*0.2)

endin

</CsInstruments>

<CsScore>

; s.t. dur. s.L. e.L. 1bDur MF CF

i "All_bounces" 0 6.7 1 0 4 930 4400

i "All_bounces" 6.7 7.3 0 1 1.8 760 250

i "All_bounces" 12.1 9.2 0 1 3.5 718 47

</CsScore>

</CsoundSynthesizer>

In this example, we have introduced p-fields to independently change the Carriers’ Fre-

quency (p8), Modulator’s Frequency (p7), the duration of one ball (p6), as well as the

direction of the “Line”, from 1 to 0, or from 0 to 1 (p4 and p5). We have also given a

range for choosing the values of the Modulator’s Frequency in a random way.

In the etudes “More_etudes_1,2,3,4”, that can be found on the link below, we have ex-

panded the model even further by introducing one more instrument that is triggering the

“All_bounces” instrument, controlling the density of the group of bounces. We also

added panning to the model, for controlling the panning of individual bounces.

1 All the examples and etudes can be found at:

https://github.com/incontri-hannover/ICSC2022/tree/main/Examples

6 Marijana Janevska, James Anderson, Joachim Heintz

7 References

1. Andy Farnell: Designing Sound, Cambridge: MIT Press (2010)

2.Examples of composed etudes can be found at:

https://github.com/incontri-hannover/ICSC2022/tree/main/Examples

