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Abstract: This paper discusses the Csound implementation of the bouncing ball 

model from Andy Farnell's Designing Sound [Farnell 2010]. We will consider 

Farnell’s approach to sound design with Pure Data, then present two possible 

procedures for extending this model to and improving it in Csound. Finally, we 

will present creative examples of varying and employing the model in a musical 

context. 
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1 Introduction  

During the last two semesters’ programming seminar at the Hochschule für Musik, The-

ater und Medien Hannover’s Incontri Institute for New Music, we have focused on trans-

ferring sound models in Andy Farnell's Designing Sound from Pure Data to Csound, one 

of which was the bouncing ball. In this paper we will follow Andy Farnell’s description 

of a bouncing ball and its acoustical characteristics. How can a bouncing ball be depicted? 

What model can be developed to replicate its sound? How is this model implemented in 

PD and Csound? How can it be applied creatively to a musical context?   

2 Analysis following Andy Farnell's description of the model of a 

bouncing ball  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. [Farnell 2010, p. 384] 
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A bouncing object’s physical behaviour is characterized as positional energy lost over 

time. Farnell’s analysis is focused on the decaying energy during a sequence of events. A 

pattern is used to represent the sequence in which the duration between events as well as 

the spectral complexity and total amplitude in each event diminish. Of course, the size, 

density, material content and initial height of the ball can all affect the impact sound, 

which can vary enormously. The rate of energy loss can be approximated as linear. Since 

the energy of each impact is a result of the height from which the ball falls, the first bounce 

is the loudest and longest in duration. It also deforms the ball the most, and results in a 

much richer sound compared to the subsequent bounces. The first bounce would have the 

most complex harmonic spectrum, whereas the ensuing bounces’ spectra would linearly 

become simpler. 

3 Program flow as general model 

The basis for each implementation is the development of a general model that can be 

implemented in any relevant programming language. Thus, following Farnell’s descrip-

tion of the model, we produced the following program diagrams and then used it to trans-

fer the model to Csound: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Program diagrams 

 

The two diagrams illustrate two important aspects of the model. 

 

Firstly, the ALL BOUNCES unit produces the temporal sequence. Each bounce acts as a 

trigger to the ONE BOUNCE unit, with the time between each decreasing as the sequence 

progresses. The ALL BOUNCES unit also creates the decaying lines for some of the var-

iables used in the ONE BOUNCE units, namely Modulation Amplitude, Carrier Fre-

quency and Carrier Amplitude.  

 

Secondly, the ONE BOUNCE unit produces the sound for each individual bounce. This 

is achieved via frequency modulation, which uses the variables generated by the ALL 

BOUNCES unit as well as locally generated envelopes. 
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4 Farnell’s process for implementing the model in PD  

There are many possible ways to implement the above model, all of which will vary de-

pending on the program used. Farnell’s PD implementation consists of two parts. In the 

first, for generating one bounce, frequency modulation synthesis is used to reduce the 

spectral complexity of each bounce. This is repeatedly triggered by a metronome in the 

second part of the model, and is responsible for the sound of each bounce. 

 

A linear envelope from 1 to 0 over a 3 second period 

is first constructed for the overall duration of the se-

quence of events. A bang message starts a metronome 

(built with the ‘metro’ object) that triggers each indi-

vidual event. The time between the first and second 

bounces (the triggering time) is 0.3 seconds, and 

gradually falls to 0 over the entire sequence of 

bounces, resulting in ever more frequent triggers. The 

initial event’s decay time is 0.2 seconds, which also 

drops to 0 over the course of the sequence, and is 

stored in the ‘float’ object. A new value is conse-

quently sent to the ‘vline’ object with each trigger, 

which produces a linear ramp that progresses from 0 

to 1 in 1 millisecond, and moves from 1 to 0 over the 

decay time sent from the ‘float’ object. This then ad-

justs the level of frequency modulation and the main 

output amplitude for each subsequent event, starting 

with an amplitude of 0.2 for the first bounce and fall-

ing to 0 at the end of the event-sequence.  

The frequency modulation synthesis, used for produc-

ing the sound of each bounce, begins with a complex 

sound that is rich in harmonics, and gradually reduces 

it to a sine wave. More precisely, the frequency of the 

carrier starts at 210Hz and falls to 80Hz; the ampli-

tude of the modulator begins at 70 for the first bounce, 

then progresses to 0. The modulator frequency is 120 

Hz, which is a constant value. 
  Fig. 3. [Farnell 2010, p. 385] 

 

 

5 Implementing the model in Csound 

We have considered two of many possible ways for implementing the model in Csound: 

 

Straightforwardly and in some ways similar to the PD version, we built two instruments: 

First, the “One_bounce” instrument produces the sound of each bounce using frequency 

modulation; the “All_bounces” instrument then uses the ‘metro’ opcode to trigger the 

“One_bounce” instrument with a decreasing time period between subsequent triggers. 
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instr All_bounces 

 kLine = linseg:k(1, p3, 0)  

 kMetroFreq = divz(1,kLine*0.3,1000) 

 kTrigger = metro(kMetroFreq) 

  if  kTrigger == 1 then 

   schedulek("One_bounce",0,kLine*0.2,kLine)   

  endif  

endin 

 

instr One_bounce 

 iDecay = p4 //receives what is kLine in 'All_bounces' 

 aMod = poscil:a(iDecay*70,120) 

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2 

 aCarFreq = 80+130*iDecay*aEnv^2 

 aCar = poscil:a(iDecay*0.2,aCarFreq+aMod) 

 outall(aCar*aEnv) 

endin 

 

schedule("All_bounces",0,3) 

 

 

Though this implementation remains relatively faithful to the PD version, there are nev-

ertheless a number of noteworthy differences. By separating the ALL BOUNCES and 

ONE BOUNCE units, Csound's instrument approach arguably better represents the model 

than the PD version. Moreover, the variable names present the opportunity to express in 

the code what takes place in the programme. Two details should be mentioned here. Since 

the 'metro' opcode in Csound has a frequency input argument (rather than PD's 'metro' 

object which requires a duration as an input), the metro frequency must be calculated as 

the inverse of the kLine signal. To avoid the possible division by zero in writing 1/kLine, 

we instead use the 'divz' opcode. In the PD version, Farnell avoids clicks when a new 

bounce is triggered by using "1 1 0, 0 $1 1" as input for the 'vline~' object, rather than the 

simpler "1, 0 $1 1". The envelope in Csound's "One_bounce" instrument could be em-

ployed without a fade-in, e.g.: 

 

aEnv = linseg:a(1,p3,0) ^ 2 

 

We nevertheless decided to include a short fade-in of two milliseconds in order to achieve 

a less noisy attack. This is one example of "fine tuning" the sound, for which Csound 

offers a wealth of possibilities. 

 

Csound also presents the possibility of an instrument that triggers itself, so that the model 

can be implemented with one self-triggering instrument that stops when a given limit is 

reached, in this case 1/1000 of a second. 

  

instr Bouncing_ball 

 iThisDuration = p3 

 iDecay = (3-p2)/3 

 aMod = poscil:a(iDecay*70,120) 

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2 

 aCarrFreq = 80+130*iDecay*aEnv^2 

 aCar = poscil:a(iDecay*0.2,aCarrFreq+aMod) 

 outall(aCar*aEnv) 

 if p3>1/1000 then 

   schedule("Bouncing_ball",iThisDuration*1.5, iThisDuration*0.9) 

 endif 

endin 

    schedule("Bouncing_ball",0,.2) 
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6 Expanding the model in Csound1 

There are many possible ways of expanding the model and employing it creatively in a 

musical setting. We will present here just a short example and discuss it briefly below. 

We will introduce p-fields to change the relevant parameters of the instrument. Since the 

modulator frequency is the only constant value in the model, adding a moving envelope 

will lead to a wide variety of frequency modulation values and a very rich palette of sonic 

possibilities. 

More examples can be found at: 

https://github.com/incontri-hannover/ICSC2022/tree/main/Examples 

 

 

instr All_bounces 

 kLine = linseg:k(p4, p3, p5) 

 kMetroFreq = 1/(p3/10*kLine) 

 kTrigger = metro(kMetroFreq) 

  if  kTrigger == 1 then 

   schedulek("One_bounce",0,p6,kLine,p7,p8) 

  endif  

endin 

 

instr One_bounce 

 iDecay = p4 //receives what is kLine in 'All_bounces' 

 kMFRandom = random:k(1, 1000) 

 kMFRandom2 = random:k(1/10, 10) 

 kModFreq = randomi:k(p5, p5+kMFRandom, kMFRandom2) 

 aMod = poscil:a(iDecay*70,kModFreq) 

 aEnv = linseg:a(0,0.002,1,p3-0.002,0)^2 

 aCarrFreq = 1+p6*iDecay*aEnv^2 

 aCar = poscil:a(iDecay*0.2,aCarrFreq+aMod) 

 outall(aCar*aEnv*0.2) 

endin 

 

</CsInstruments> 

<CsScore> 

;                         s.t.     dur.   s.L.  e.L.  1bDur  MF    CF    

i "All_bounces" 0        6.7     1      0        4       930   4400  

i "All_bounces" 6.7     7.3     0      1        1.8    760   250   

i "All_bounces" 12.1   9.2     0      1        3.5    718   47 

 

</CsScore> 

</CsoundSynthesizer> 

 

In this example, we have introduced p-fields to independently change the Carriers’ Fre-

quency (p8), Modulator’s Frequency (p7), the duration of one ball (p6), as well as the 

direction of the “Line”, from 1 to 0, or from 0 to 1 (p4 and p5). We have also given a 

range for choosing the values of the Modulator’s Frequency in a random way. 

In the etudes “More_etudes_1,2,3,4”, that can be found on the link below, we have ex-

panded the model even further by introducing one more instrument that is triggering the 

“All_bounces” instrument, controlling the density of the group of bounces. We also 

added panning to the model, for controlling the panning of individual bounces. 

                                                 
1 All the examples and etudes can be found at:  

https://github.com/incontri-hannover/ICSC2022/tree/main/Examples 
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